gl pure-systems

3

Documentation:
AC++ Compiler Manual

pure-systems GmbH
and Olaf Spinczyk

Version 1.5, July 18, 2011

(c) 2002-2011 Olaf Spinczyk' and pure-systems GmbH?

los@aspectc.org
http://www.aspectc.org

Zaspectc@pure-systems.com
http://www.pure-systems.com
Agnetenstr. 14

39106 Magdeburg

Germany

(c) 2002-2011 Olaf Spinczyk and pure-systems GmbH
All rights reserved.

CONTENTS CONTENTS

Contents
1 Introduction 5
2 Download and Installation 5
2.1 Linux, Solaris,andMacOS X 6
22 Windows 7
3 Invocation 7
3.1 Modes 7
3.1.1 Whole ProgramTransformation (WPT) 7
3.1.2 Single Translation Unit (STU) 8
3.2 WeavinginLibraryCode 8
3.3 Options 9
3.3.1 -pl-—path <arg> i i e 9
3.3.2 —dl-—dest <arg> i i e e e e 9
3.3.3 -e|-—extension <arg> i it e e 9
3.3.4 -—v|-—verbose [<arg>] . . . i i i e 11
335 -—cl-—compile <arg> i e 11
3.36 —o|-—output <arg> 11
3.3.7 —-i|-—include_files v v v v i i i 11
3.3.8 -a|-—aspect_header <arg> 12
3.3.9 -r|--repository <arg>t 12
3.3.10 ——config <arg> . . . v i i i e e e e e e e e 12
3.3.11 —k|——keywords« . i v i it e e 13
3.3.12 ——introduction_depth <arg> 13
3.3.13 ——no_line e e 13
3.3.14 ——gen_size_type <arg> . . . v i vt vttt 13
3.3.15 ——problem. e e e e 14
3.3.16 ——no_problem. i e e e e e e 14
3.3.17 ——warn_ e e e e e 14
3.3.18 ——no_warn_ e e e e e e 14
3.3.19 -1 <arg> e e 14
3.3.20 -D <name>[=<value>] i v i 15
3.321 -U <name> i e e e e e e e 15
3.3.22 —include <arg> . . . v i i i e e e e e e e e e 15
34 Examples 15

CONTENTS

CONTENTS

4 Platform Notes

41 Ports. e
411 Linux e
412 Windows
4183 Solaris.
414 MacOSX

4.2 Back-End Compiler Support
421 GNUQg++ oo oo
422 Cygwin/GNUg++.
423 MSVC++o e
424 BorlandC++

5 Problems & Workarounds

51 CommonPifalls
511 IncludeCycles

5.1.2 Duplicate Forced Includes in STU Mode

5.1.3 Compiling libraries
5.1.4 Projectstructure
51.5 The —-aspect_headeroption.
5.2 Unimplemented Features
5.2.1 Multi-Threading Support
522 ParseErrors L.
523 Templates.
524 Macros
5.2.5 Unimplemented Language Elements
5.2.6 SupportforPlainCCode
5.2.7 Support for C++ language extensions
5.2.8 Constructor/Destructor Generation
5.2.9 Functions with variable argument lists

5.2.10 Restrictions on calling t jp->proceed ()

5211 Adviceonadvice

6 Code Transformation Patterns

6.1 Inclusion of Aspect Header Files

2 DOWNLOAD AND INSTALLATION

1 Introduction

The program ac++ is a compiler for the AspectC++ programming language. It
is implemented as a preprocessor that transforms AspectC++ code into ordinary
C++ code. During this transformation aspect code, which is defined by aspects,
is woven statically into the component code. Aspects are a special AspectC++
language element, which can be used to implement crosscutting concerns in sep-
arate modules. Aspect definitions have to be implemented in special “aspect
header files”, which normally have the filename extension “.ah”. After the code
transformation the output of ac++ can be compiled to executable code with ordi-
nary C++ compilers like GNU g++, or Microsoft VisualC++.

More details about the features of AspectC++ can be found in the quick ref-
erence sheet and the publications about the language and its application. Ev-
erything is available on the AspectC++ homepage http://www.aspectc.org,
which is also a source for updates of this manual.

The compiler’s source code is freely available from the project’s web site and
covered by the GPL. For your convenience there are also binary versions of the
open source implementation available. Besides the free GPL version, commercial
licenses for ac++, the underlying parser and code manipulator library and the
ac++ integration into the MS Visual Studio IDE as well as commercial support
are available from pure-systems GmbH'.

This document focuses on how the ac++ compiler works and how it is used.
The following sections are structured as follows: Section 2 describes how to get
and install the compiler. It is followed by section 3, which describes the two
transformation modes of ac++ and the meaning of the command line arguments.
Platform-specific notes are given in section 4. It describes the specifics of the
ac++ ports and which non-standard features of the back-end C++ compiler are
supported. Section 5 lists some known problems, common pitfalls, and unimple-
mented language features.

2 Download and Installation

Binaries of ac++ for various platforms are available for free download from the
AspectC++ homepage (see section 4 for the list and state of the ac++ ports).
The versioning scheme is shown in table 1 on the following page.

1http://www.pure—systems.com/

http://www.aspectc.org
http://www.pure-systems.com/

2.1 Linux, Solaris, and MacOS X 2 DOWNLOAD AND INSTALLATION

| Scheme | Example | Kind of Release/Meaning |
<version>.<release> 0.7 A regular release 0.7.

<version>.<release>.<fix-no> 0.7.3 Bug fix release number 3 of 0.7

<version>.<release>pre<no> | 0.8prel Pre-Release number 1 for 0.8

Table 1: Versioning scheme

Besides the archive file with the compiler there is a README file and a
CHANGELOG file available for each release. The README file explains the nec-
essary steps for the installation, while the CHANGELOG documents the changes
in the corresponding release as well as the history of changes.

The following subsections explain how the current version of the ac++ com-
piler is unpacked, installed, and configured. This process depends on the devel-
opment platform. Skip to the appropriate part from here.

2.1 Linux, Solaris, and MacOS X

The Linux, Solaris, and MacOS X installation procedures are very similar, be-
cause all of them belong to the UNIX system family. The ac++ compiler and the
example code is provided in a gzip-ed tar archive (tgz file). Note that on Solaris
the GNU tar command gtar must be used instead of the Solaris tar to unpack
the archive. On Linux and MacOS the archive can be unpacked with the following
command in any directory:

tar xzvf <tar-file—-name>

The command creates a directory aspectc++-<version>, which contains the ac++
binary, the ag++ front-end, the example code, and everything else that is needed
to run the examples like a Makefile. To transform the examples (in the examples
directory) simply execute make in the installation directory. Each example is then
transformed from AspectC++ code into C++ code by weaving aspects and saved
in examples/<name>-out. To run the example, enter the created directory, call
make and start the executable.

The Makefile, which is used to compile the examples uses the command
ag++, which is a wrapper for calling ac++, g++, and for the generation of the
parser configuration file, which is needed for ac++. A separate manual for ag++
is available from the AspectC++ web site.

6

3 INVOCATION 2.2 Windows

2.2 Windows

The Windows port of ac++ supports the freely available Cygwin/GNU g++,
MinGW g++, and MS Visual C++ compiler® as back-end compilers.

The installation of ac++ in an environment with GNU g++ and make is sim-
ilar to the UNIX-like installation described in section 2.1. Additionally refer to
section 4.2.2 on page 18, which provides some specific information about path
names in the Cygwin environment.

A comfortable integration of ac++ into the Visual Studio .NET IDE is avail-
able by pure-systems GmbH?. The following procedure outlines the installation
for windows command line compilers.

The ac++ compiler and the examples are provided in a ZIP archive. Unpack
ac++ in a directory of your choice, for instance into c:\AC. The next step is
to create a parser configuration file that describes predefined macros and stan-
dard include file paths of your back-end compiler. The files pumabc55.cfg and
pumavc?.cfg can be taken as examples. An automatic generation of the con-
fig file as under UNIX systems is not available at the moment in the free ac++
version.

The examples directory contains various examples that show how to write
aspects in AspectC++. You can use the examples.bat batch file to weave all
the examples at once. After this step the transformed example files can compiled.

3 Invocation

3.1 Modes

The ac++ compiler supports two major transformation modes:

3.1.1 Whole ProgramTransformation (WPT)

WPT mode was the first transformation mode of ac++. However, it is not obsolete,
because it may be useful in many cases. In this mode ac++ transforms all files
in a project directory tree (or set of directories) and saves the result in a different
directory tree. For each translation unit and header file a new file is generated in
the target tree with the same name. If further transformations of the source code
have to be done, either with ac++ or other tools, this is the mode to choose. Even
comments and whitespace remain untouched.

2http://www.borland.com/. Note that Borland C++ will probably be discontinued in the
near future.
3an evaluation version can be downloaded from http://www.pure-systems.com/

http://www.borland.com/
http://www.pure-systems.com/

3.2 Weaving in Library Code 3 INVOCATION

The compiler performs a simple dependency check in WPT mode. A trans-
lation unit is recompiled if either the translation unit itself or any header file of
the project has been changed. This is not very precise but makes sure that after
changing an aspect header file all translation units are recompiled.

3.1.2 Single Translation Unit (STU)

The new STU mode was introduced with ac++ version 0.7pre1. Here ac++ must
be called once for each translation unit like a normal C++ compiler. This makes it
easier to integrate ac++ into Makefiles or IDEs. As ac++ can’t save manipulated
header files in this mode, because the unchanged header files are needed for
the next translation units, all #include directives in the translation unit that refer to
header files of the project directory tree are expanded and, thus, saved together
with the manipulated translation unit. The resulting files can be fed directly into a
C++ compiler. They do not depend on any other files of the project anymore.

In the STU mode the user is responsible for checking the dependencies of
changed files and for calling the right ac++ to transform all translation units that
depend on a changed file. The general dependency rule is that a translation
unit depends on every header file that is directly or indirectly included and every
aspect header that might affect the translation unit (normally all!) and the files
they depend on. If you are using g++ and make, checking of this rule can be
automized:

g+t —-E —-I<some-path> -MM <trans—-unit> -—-include "=x.ah"

This call of the g++ preprocessor prints a makefile dependency rule, which is
suitable to determine when ac++ must be run to rebuild a tranlsation unit.

3.2 Weaving in Library Code

A C++ library consists of header files that have to be included by the client code
and an archive file that contains the object code. If the library is implemented in
AspectC++ and the client code should not be compiled with ac++ it is necessary
to generate manipulated header files. In the WPT mode this is done anyway. In
the STU a directory tree with all manipulated headers can be generated with the
-1 option (see 3.3.7 on page 11).

8

3 INVOCATION 3.3 Options

3.3 Options

Table 2 on the next page summarizes the platform-independent options supported
by ac++. Platform specific options will be explained in section 4. All options can
either be passed as command line arguments or by the configuration file*, which
is referenced by the environment variable PUMA_CONFIG (see section 2). "=’ in
any of the columns WPT or STU means that this option has no meaning in the
corresponding translation mode.

The upper part of the table lists ac++-specific options, while the options in the
lower part are widely-known from other compilers like g++.

3.3.1 -p|--path <arg>

This option defines the name of a project directory tree <arg>. The option can be
used more than once if several directories belong to the project. At least one —p
options is always needed when ac++ has to transform code, even in STU mode.

3.3.2 -d|--dest <arg>

With -d a target directory for saving is selected. It corresponds to the last —p
option. For example, if two directories belong to a project they would be described
in STU mode with

-p dirl -p dir2
and in WPT with two source/target pairs:
-p sourcel -d targetl -p source2 -d target2

In STU mode —d makes only sense in combination with —i to generate header
files for a library (see 3.3.7 on page 11).

3.3.3 -e|--extension <arg>

In WPT mode ac++ searches in all project directories for translation units to trans-
form. Translation units are identified by their filename extension. The default is
“cc”, which means that all files ending with “.cc” are handled. By using the option
—-e cpp Or —e cxx you can select other frequently used filename extensions.
The option can be used more than once, but only the last one is effective.

In WPT mode ac++ generates a file called ac_gen.<extension>. This
extension is also taken from the —e option, if one is provided.

4In the current ac++ version some of these options are not allowed in the config file, namely all
between -v and -—no_problemn.. ..

3.3 Options 3 INVOCATION
Option | WPT | STU | Description
-p|--path <arg> X X | Defines a project directory
-e|--extension <arg> X — | Filename extension of translation
units
-v|--verbose <arg> X X | Level of verbosity (0-9)
-c|--compile <arg> - X | Name of the input file
-o|-—output <arg> - X | Name of the output file
-g|-—generate - X | Generate link-once code
-i|--include_files — X | Generate manipulated header files
-a|-—-aspect_header <arg> X X | Name of aspect header file or 0
-r|--repository <arg> X X | Name of the project repository
--config <arg> X X Parser configuration file
-k | -—keywords X X | Allow AspectC++ keywords in nor-
mal project files
——introduction_depth <arg> X X | Set the maximum depth for nested
introductions
—-no_line X X | Disable generation of #11ine direc-
tives
--gen_size_type <arg> X X | use a specific string as size t
--warn. .. X X | enable a weaver warning that is
suppressed by default
—--no_warn. .. X X | suppress a specific weaver warn-
ing
-—problem. .. X X | enable back-end compiler problem
workaround (see 4.2)
—-no_problem. .. X X | disable back-end compiler problem
workaround
~-I <arg> X X | Include file search path
-D <name> [=<value>] X X | Macro definitions
-U <name> X X | Undefine a macro
--include <arg> X X | Forced include

Table 2: ac++ Compiler Option Summary

10

3 INVOCATION 3.3 Options

3.3.4 -v|--verbose [<arg>]

The compiler can print message on the standard output device, which describe
what it is currently doing. These message can be printed with different levels of
details. You can select this level with the parameter <arg>. The range is from
0, which means no output, to 9, which means all details. The option -v0 is the
same as having no —v option at all. —v without <arg> is the same as -v3.

The —v option can be used more than once but only the last one is effective.

3.3.5 -c|--compile <arg>

The —c option is used to select an input file for ac++ in the STU mode. Using
it more than once is possible, but only one is effective. There are no restrictions
on the filename extension. ac++ expects that the file contains AspectC++ source
code.

3.3.6 -o|--output <arg>

With the -0 option one can select the name of the output file, i.e. the name of
the target of the code transformation, in STU mode. If this option is not used, the
default output filename is ac.out. Note that the output filename is not derived
from the input file name as it is done by other compilers.

3.3.7 -i|--include_files

The -1 option has to be used if the source code of the project should be compiled
into a library and ac++ should run in STU mode (see 3.2 on page 8). When a
translation unit is transformed by using —c and —o in STU mode no manipulated
header files are generated. All include files are expanded within the generated
source code. This is fully sufficient if the translation units will then be compiled
and linked directly. However, if a library should be provided the client needs a
library file (an archive) and manipulated header files. These can be generated
with —i. The generation results in a directory tree with the same structure as the
input directory tree specified by —p exhibits. Use the —d option to select the target
directory name(s).

Note that at the moment only and all files with the extension . h are considered
to be include files. This is rather inflexible and will be improved in future releases.

11

3.3 Options 3 INVOCATION

3.3.8 -a|--aspect_header <arg>

By default ac++ searches all files with the filename extension . ah in the project
directory tree(s) and allows all aspects defined in these files to affect the current
translation unit. If you are looking for a simple mechanism to deactivate aspects
at compile-time, or if . ah does not conform to your local conventions, or if not all
aspects should affect all translation units (be careful! See 5.1 on page 19), the
—a option might help.

The option may be used more than once and each of them selects one aspect
header that has to be considered for the current translation unit in STU mode or
all translation units in WPT mode. If no aspect header should be considered use

-a0.

339 -r|--repository <arg>

The “project repository” is an XML-based description of global information about
an AspectC++ development project that is compiled with ac++. It fulfills two pur-
poses:

1. Itis a vehicle to transport information from one compiler run to another

2. It might be used by integrated development environments to visualize the
join points where aspects affect the component code.®

The —r option is used to define the name of the project repository file. However,
this is an experimental feature. The file format is volatile. The uniqueness of join
point IDs is only guaranteed if the project is compiled with a project repository. If
a file with the given name does not exist, ac++ will create a new repository file. If
the file exists, but is empty or does not contain valid data, ac++ terminates with an
error message. A warning messages will be printed if the version of the weaver,
which created the project repository, differs from the current ac++ version.

3.3.10 --config <arg>

Besides setting the environment variable PUMA_ CONF IG this options can be used
to set the path to the parser configuration file.

SIn fact, the AspectC++ Development Tools for Eclipse (ACDT) already use the repository
to visualize matched join points. See the ACDT homepage http://acdt.aspectc.org/ for
information on the ACDT project.

12

http://acdt.aspectc.org/

3 INVOCATION 3.3 Options

3.3.11 -k|--keywords

By default the AspectC++ keywords aspect, pointcut, advice, and slice
are only treated as keywords in aspect header files. If they are used in normal
project files, ac++ interprets them as normal identifiers. By this design decision
aspects can be woven into legacy code even if the code uses the AspectC++
keywords as normal identifiers.

If the AspectC++ keywords should be interpreted as keywords in normal
project files as well, the command line option -k or -—keywords has to be used.

In files that do not belong to the project, e.g. standard library header files,
the AspectC++ keywords are always regarded as normal identifiers, even if -k or
--keywords is used.

3.3.12 --introduction_depth <arg>

AspectC++ introductions may affect introduced code. This is called a “nested in-
troduction”. In order to avoid problems with infinitely nested introductions, ac++
checks the “depth” of a nested introduction and does not allow a depth that ex-
ceeds the given maximum <arg>. The default value for <arg> is 10.

3.3.13 ——no 1line

When ac++ manipulates files, e.g. by inserting generated code, it also inserts
#1ine directives. Inserting these directives can be disabled with the ——no_1line
option. Normally, #1ine directives are only generated by C preprocessors. The
directives are important for back-end compiler error messages and source code
debuggers. Without the #1ine generation these numbers correspond to the lines
in the generated code, while they correspond to the source code written by the
programmer otherwise.

3.3.14 --gen_size_ type <arg>

ac++ generates a new operator, which has size_t in its argument type list. As
the generated code shall not include the respective header file (to avoid portability
problems), the weaver normally generates the name of the right type. However,
in case of cross-compilation the type on the target platform might differ. Then
it is possible to provide a string with this option, which is directly used in the
constructor’s argument list.

13

3.3 Options 3 INVOCATION

| Warning Name | Condition |

deprecated a deprecated syntax is being used
macro macro-generated code would have to be transformed

Table 3: ac++ Warnings

3.3.15 --problem...

An option like this is used to enable a back-end compiler-specific code generation
workaround. This is sometimes needed, because the C++ compilers differ in their
degree of standard conformance. For details about the workarounds needed for
each back-end refer to section 4.2.

3.3.16 --no_problem...

This option can be used to disable a back-end compiler-specific code generation
workaround which is enabled by default.

3.3.17 ——warn_...

With this option the weaver is instructed to print specific warnings that are other-
wise suppressed. Table 3 lists the names of warnings currently supported by the
weaver.

3.3.18 ——no_warn_...

The warnings listed in table 3 can be suppressed with ——no_warn_<Name>.

3.3.19 -I <arg>

The option —I adds the directory <arg> to the list of directories to be searched
for header files. It can be used more than once. The compiler ac++ needs to
know all directories, where header files for the current translation unit might be
located.

In case of system headers there are often a lot of these directories. To make
the setup of ac++ more convenient we provide the ag++ --gen_config com-
mand. The command calls the g++ compiler to get all these paths. A similar
mechanism exists for the (commercial) Visual Studio Add-In. Users of Borland
C++ or non-supported back-end compilers have to find out this list on their own.

14

3 INVOCATION 3.4 Examples

3.3.20 -D <name>[=<value>]

With -D a preprocessor macro <name> will be defined. Without the optional
value assignment the macro will get the value 1. The option can be used more
than once.

In most cases your source code expects some standard macros to be defined
like win32, 1inux, or 1386. And even if your code doesn’t use them directly,
they are often required to be set correctly by system header files. Thus, for the
ac++ parser a correct set of these macros has to be defined. For g++ users we
provide a command called ag++ that calls the compiler to get the list of these
macros. A similar mechanism exists for the (commercial) Visual Studio Add-In.
Users of Borland C++ or non-supported back-end compilers have to find out this
list on their own.

3.3.21 -U <name>

This option can be used to undefine a previously defined macro.

3.3.22 -include <arg>

The -include option can be used to include a file <arg> into the compiled
translation unit(s) even though there is no explicit #include directive given in
the source code. If multiple —include options are given on the command line,
the files are included in the same order (from left to right). If you use the option
in STU mode make sure that the back-end compiler is not forced to include the
same files again (read details in 5.1.2 on page 21).

3.4 Examples

® ac++
Displays all options with a short description.

e ac++ -1 examples/Trace —-p examples/Trace -d
examples/Trace-out
Transforms the complete project from directory “examples/Trace” into the
directory “examples/Trace-out”. This is the whole program transformation
(WPT) mode, which also performs a simple dependency check.

The following examples describe the compiler like interface (STU Mode). All de-
pendency handling has to be done by the user.

15

4 PLATFORM NOTES

e act+t+ —c main.cc -p.
Transforms only the translation unit main.cc. The default name for the
output file is ac. out.

e ac++ -c main.cc -o main.acc -p.
Transforms the file main. cc into the new file main.acc.

e act++ —-c main.cc -o main.acc -p. -—-a trace.ah
Transforms the file main.cc into the new file main.acc with the aspect
located in trace.ah.

e act+ —-i -v9 -p. -d includes
Creates the manipulated project header files and stores them into the
directory includes. ATTENTION: This works only once, because the
includes directory is located inside the project directory tree and the as-
pect header files exists twice then.

4 Platform Notes

4.1 Ports

The ac++ compiler was originally developed on RedHat Linux systems.Today
most of the development is still done under Linux (Debian and OpenSuse), but
Windows has become a second development platform. This means that the Win-
dows and Linux ports are the most tested. The Solaris and MacOS X ports were
compiled, because they were demanded by users, but they are far less tested
than our development platform ports.

4.1.1 Linux

The ac++ binary was tested on. ..

e Debian 3.0, ..., 5.0 and various Ubuntu versions. Note that Debian and
Ubuntu packages of AspectC++ are integrated into the distributions. They
can be easily installed with apt—-get install aspectc++.

e OpenSuse 8.2, ..., 11.3

4.1.2 Windows

Windows systems have different filename conventions than UNIX systems. Al-
though ac++ was originally developed on Linux and does not use or need the

16

4 PLATFORM NOTES 4.2 Back-End Compiler Support

Cygwin environment, path names are allowed to contain ’\’ characters and drive
names like ’c:’. The UNIX filename delimiters ’/’ are also accepted.

4.1.3 Solaris

No specific information available, yet.

4.1.4 MacOS X

No specific information available, yet.

4.2 Back-End Compiler Support

The C++ compiler that should be used to compile the output of ac++ (back-end
compiler) plays a very important role for ac++, because compilers normally come
with header files, which ac++ must be able to parse. None of the back-end com-
pilers listed here has totally standard conforming header files, which makes it very
hard for ac++ to parse all this code.

GNU g++ (including Cygwin/GNU g++ under Windows) and MS VC++ are
our best supported compilers. After the implementation of a lot of MS VC++
specific extensions, the freely available Borland C++ became less important in the
development. Depending on the users’ demands it might become an unsupported
platform in future releases.

4.2.1 GNU g++

There are a lot of GNU g++ specific C++ extensions as well as several builtin
functions and types. To enable all these extensions the option ——gnu (or
-—gnu-2.95 if g++ 2.9x header files should be parsed) has to be used. If a
configuration file is generated with ag++ —-gen_config, this option will be au-
tomatically inserted (either ——gnu or ——gnu-2. 95 depending on your compiler).

The ac++ parser aims at being compatible with g++ and nearly all of the
header files that come with g++ 3.x and 2.9x can be parsed. The workaround
to install the old g++ 2.95 header and to modify your puma .config file so that
ac++ finds these old files while parsing your code is no longer needed starting
from version 0.8pre2.

Compilers from the g++ family do not support explicit template specialization
in @ non-namespace scope. However, this feature is needed by ac++ in the code
generation process. A workaround for this problem is automatically enabled when

17

4.2 Back-End Compiler Support 4 PLATFORM NOTES

you use the ——gnu or ——gnu-2.95 option. To explictly enable or disable the
workaround use ——problem_spec_scope Of ——no_problem_spec_scope.

4.2.2 Cygwin/GNU g++

The ac++ compiler can also be used with the Cygwin/GNU g++ compiler under
Windows. Note, that ac++ itself is not a Cygwin application and, thus, does not
support Cygwin-specific path names like /home/olaf, which is relative to the
cygwin installation directory. If you generate your parser configuration file auto-
matically with ag++ —--gen_config the contained include paths will automati-
cally be converted from Cygwin paths names to Windows path names using the
cygpath command. However, be careful when you set the PUMA_CONFIG envi-
ronment variable or when you pass any other path name to ac++. Furthermore,
ac++ and ag++ don’t support Cygwin file links. This might also cause compilation
problems. A known problem is that in some Cygwin versions g++ itself is a link
to g++-4. This means that it will not be found by ag++. It helps to provide the
proper compiler name with the ——c_compiler g++-4 option.

423 MSVC++

The ac++ parser aims at being compatible with Microsoft Visual C++ 7. This
compiler comes with a large number of non-standard language extensions. To
enable support for these extensions in the ac++ parser the command line option
—--vc must be provided either on the command line or in your configuration file.

It is not recommended to use ac++ with Visual C++ 6 as this compiler has
some problems with the generated code, even though the generated code is stan-
dard complient.

We recently found a bug in Visual C++ 6 and 7, which is related to local
classes defined in header files. As ac++ sometimes generates such classes a
workaround has to be enabled until Microsoft fixes the problem. The workaround
can be enabled with the command line option ——-problem_local_class and
disabled with ——no_problem_local_class. In the current ac++ version the
workaround is enabled by default if the executable was compiled for the Windows
platform.

4.2.4 Borland C++

The Borland C++ compiler is not well supported by ac++. Probably the support
will be completely discontinued in the near future.

18

5 PROBLEMS & WORKAROUNDS

class Target { ‘§H$# #include “Target.h* // for last_
publiic: #include <stdio.h> // for slice
void fO {
// do something aspect Problem {
} Target *last_;
}; advice “Target”: slice class {
void dump O {
// print object, needs stdio
}
S b
advice execution(“Target") :
after O {

last_ = tjp->thatQ;
last_->dump(Q);

source code -| I

generated include .
(needed for the slice, weaving (aC++)
which depends on
- 1 stdoh) - - v - - - - __ _

#include “Target.h* // for last_
s | #include <stdio.h> // for slice

class Target {
void transformed dump {
// needs stdio
}
public:
void transformed f {
// do something
}
};

J S

woven code

class Problem {
Target *last_;
void transformed advice {
// needs Target, thus Target.h

i

|

include cycle!

Figure 1: Include cycle problem
5 Problems & Workarounds

5.1 Common Pifalls
5.1.1 Include Cycles

In versions prior to 1.0pre1 include cycles could occur in many situations and
workarounds could not always be found. In version 1.0pre1 include cycles can
only occur in the case of aspect code with introductions. Advice for code join
points cannot produce cycles.

The reason for the remaining possible cycles is that ac++ generates
#include <aspect-header> in every file that contains the definition of a tar-
get class of an introduction. Without this generation pattern definitions from the
aspect header would not be accessible by introduced code. However, if the as-
pect header directly or indirectly includes the target file, there is a cycle, which
might cause parse errors.

Figure 1 illustrates the include cycle problem by giving an example. Here an
aspect problem uses the type Target and therefore includes Target.h. At the
same time the aspect introduces a slice into the class Target. As the slice might
depend on definitions or #includeS in Problem.ah, the weaver generates the

19

5.1 Common Pifalls 5 PROBLEMS & WORKAROUNDS

include
7| #include “Dump.ah” // the slice
#include “Target.h* // for last_

#include <stdio.h>
slice class Dump {

void dump() {
// print object

aspect Problem {
Target *last_;
// refer to slice in Dump.ah:

b5

'| I advice “Target“: slice Dump;
// advice that needs Target:
class Target { advice execution(“Target®) :
public: after O {
void fO { last_ = tjp->that(;
// do something } last_->dump(Q);
}
}; e

source code

generated include l weaving (ac++)

(needed for the slice,
— — which depends on - = = = = = = = = =

stdio.h) -
y #include <stdio.h>
// slice code removed by weaver

lass Target { % | |
class Targe : - —
void transformed dump { #include “Target.h” // for Tlast_

// needs stdio
class Problem {

public: Target *last_;
void transformed f { void transformed advice {
// do something // needs Target, thus Target.h
} }
}; 1;
woven code no include cycle!

Figure 2: Include cycle avoidance

#include "Problem.ah" in Target.h. This causes the include cycle. Include
guards (which should always be used!) avoid duplicate definitions, but do not
solve the problem. It might still be the case that the parser complains about
undefined types.

To avoid these cycles introductions can always be separated from the aspect
by means of slices. Slice declarations and slice member definitions can be lo-
cated in arbitrary aspect header files. The aspect weaver will only include these
aspect headers in the target classes’ header/implementation files and thereby
avoid the cycle. For a slice reference within an advice declaration even a forward
declaration of the slice is sufficient.

Figure 2 shows how the include cycle from the example in Figure 1 can be
avoided. Here the function dump is implemented in a separate slice class Dump
that is stored in an aspect header file bump.ah. The implementation of Dump
could rely on defintions and #includeS in Dump.ah (stdio.h in this example),
but not on defintions in problem.ah. Therefore, the aspect weaver generates
#include "Dump.ah" and not #include "Problem.ah" in Target.h.

Note that in the case of non-inline introductions the #include directive is gen-
erated in the file that contains the “link-once element” of the target class, which
is never a header file. You can, for example, exploit this feature to produce cyclic

20

5 PROBLEMS & WORKAROUNDS 5.1 Common Pifalls

class relationships. The included file will be the aspect header file that contains
the definition of the non-inline slice member.

5.1.2 Duplicate Forced Includes in STU Mode

In the Single Translation Unit (STU) mode ac++ handles forced includes (see
—-include option in section 3.3.22 on page 15) in the following way:

internal includes: If the included file is part of your project, the file content will
be expanded in the compiled translation unit.

external includes: If the included file is not part of the project, ac++ generates
an #include directive with the absolute path name of the file.

In both cases the back-end compiler should not be forced to include the same file
again. For example, g++ users should not use the -include option with ac++
and with g++, because otherwise symbols might be defined twice.

5.1.3 Compiling libraries

There are certain restrictions on the code structure if ac++ should generate trans-
formed header files for an aspect-oriented C++ library. For instance, all header
files need "include guards" and should not depend on the context by which they
are included. Furthermore all headers must have the extension .h.

Furthermore, users have to be careful not to generate tranformed headers
into the project directory tree (-p option). Otherwise, the next compilation of
the library is likely to fail, because ac++ would search aspect header files in the
generated directory tree.

5.1.4 Project structure

The AspectC++ weaver ac++ expects that "projects” do not overlap, have no cyclic
dependencies, and can be described by a list of directory names (-p option). As-
pectC++ needs the notion of a "project” in order to restrict the set files that are
affected by the aspects. Sometimes big applications are organized in multiple
projects within the same workspace and have arbitrary dependencies (include re-
lations) to each other. For these applications selecting the —p option is sometimes
difficult. Often treating the whole workspace as one AspectC++ project is the best
solution.

21

5.2 Unimplemented Features 5 PROBLEMS & WORKAROUNDS

5.1.5 The --aspect_header option

This option can be used to avoid that ac++ automatically searches all aspect
header files in the project directory tree. It is to be made sure by the user that
each aspect header file is included only once. If no aspect headers should be
taken into account, the option “-a 0” has to be used.

5.2 Unimplemented Features
5.2.1 Multi-Threading Support

C++ has no integrated thread model like Java. Therefore, the woven AspectC++
code cannot rely on any available thread synchronization mechanism. As a result
the implementation of the cf1ow pointcut functions is currently not thread-safe.

We are urgently investigating how thread synchronization and thread local
storage can be integrated into AspectC++.

5.2.2 Parse Errors

If ac++ stops processing because of parse errors this might be due to an incom-
patibility or missing feature in the underlying C++ parser.

In the case that the error is found in your own code, i.e. code you are able to
modify, you could use the following workaround:

#ifdef _ puma

// ... simplified version of the code for ac++
felse

// ... original code

#endif

Even if your own AspectC++ code contains only harmless C++ code you might
experience parsing problems due to header files from libraries which your appli-
cation code includes, especially in the case of template libraries. In this situation
it might help to copy the file with the parse error into a different directory. Then
you have to change the code in this file to avoid the error message by simplifying
it. The final step is to extend the puma.configfile by a *-1 <path>” entry for the
directory where you placed the copy. As the result ac++ will now parse the simpli-
fied version while the original file is untouched and used while the C++ compiler
runs.

22

5 PROBLEMS & WORKAROUNDS 5.2 Unimplemented Features

5.2.3 Templates

Currently ac++ is able to parse a lot of the (really highly complicated) C++ tem-
plates, but weaving is restricted to non-templated code only. That means you can
not weave in templates or even affect calls to template functions or members of
template classes. However, template instances can be matched by match ex-
pressions in the pointcut language and calls to members of class templates or
template functions can be affected by advice.

5.2.4 Macros

In versions prior to 1.0 the weaver was not able at all to transform code that
was generated by macro expansion. It simply printed a warning and continued
without transforming the code. To turn this warning off the command line option
—-no_warn_macro could be used (see Table 3 on page 14).

The current solution is to expand a macro whenever it is affected by aspects
and do the weaving afterwards. While this works fine for most cases, problems
may occur if the macro definition used by the (cross-)compiler differs from the one
used by ac++. Future releases will thus distinguish between macros definitions
that belong to the project and can safely be expanded and macros that were
defined outside the project.

5.2.5 Unimplemented Language Elements

set and get are the most demanded unimplemented language features. The
discussion about a useful semantics of these pointcut functions in As-
pectC++ is still in progress.

cflow does not yet support exposure of context information.

base only works as expected if all classes that should be matched by the pointcut
function’s argument are known in the translation unit. Therefore, the aspect
header file has to contain the right set of include directives.

5.2.6 Support for Plain C Code

Currently ac++ generates C++ code, which cannot be compiled by a C compiler.
As for many hardware platforms in the embedded domain no C++ compiler is
available we are actively looking for a solution.

23

5.2 Unimplemented Features 5 PROBLEMS & WORKAROUNDS

5.2.7 Support for C++ language extensions

The parser does not yet support the language features of the upcoming C++ 1x
standard. Furthermore, most but not all g++ specific language extensions are
implemented.

5.2.8 Constructor/Destructor Generation

If advice for construction/destruction joinpoints is given and no construc-
tor/destructor is defined explicitly, ac++ will generate it. However, currently
ac++ assumes that the copy constructor has one argument of type “const
<Classname>s&”. This leads to problems if the implicitly declared copy construc-
tor has an argument of type “<classname>&”. Therefore, you should not define
construction/destruction advice for classes with this copy constructor signature.

5.2.9 Functions with variable argument lists

There is no support for execution advice on functions with variable argument lists.
A warning will be issued. There is no portable way to generate a wrapper function
for this class of functions.

5.2.10 Restrictions on calling t jp—>proceed ()

Due to a problem with result object construction/destruction of intercepted func-
tions, the t jp—->proceed () function may only be called once during around ad-
vice.

5.2.11 Advice on advice

Join points within advice code are not matched by pointcut expressions.

24

6 CODE TRANSFORMATION PATTERNS

6 Code Transformation Patterns

This appendix documents some internals of the ac++ weaver implementation.

6.1 Inclusion of Aspect Header Files

The weaver has to guarantee that aspect header files are only compiled in a
translation unit if they are affecting the shadows of code join point that are located
within the translation unit. If an aspect header has to be included because of this
reason, the same check has to be performed again, because the aspect header
might contain code join points that are affected by other aspects.

In order to implement this behavior a forward declaration of the advice invoca-
tion function is generated and a macro __ac_need_<mangled_ah_ filename>
is defined in each file that contains a join point shadow, which is affected by
an aspect that is defined in an aspect header whose mangled files name is
<mangled_ah_filename>. Mulliple inclusions shall be avoided. Therefore,
another macro __ac_have_<mangled_ah_filename> is set wherever an as-
pect header is included by generated code. The following code is an example that
shows the code which is generated at the end of each translation unit for each
known aspect header of the project:

#ifdef _ _ac_need_<mangled ah_ 1>

#ifndef _ ac_have_<mangled ah_1>

#define __ac_have_<mangled_ _ah_ 1>
#include "ah_ 1"
#endif

// other aspect headers that are needed if ah_1 is needed

#ifndef _ ac_have_<mangled ah_4>

#fdefine __ _ac_have_<mangled ah_ 4>
#include "ah_ 4"
#endif

#endif // __ac_need_<mangled ah_1>

This code transformation pattern might result in multiple #include directives for
the same aspect header files. This is correct, as there might be cyclic dependen-
cies between the aspect headers.

25

	Introduction
	Download and Installation
	Linux, Solaris, and MacOS X
	Windows

	Invocation
	Modes
	Whole ProgramTransformation (WPT)
	Single Translation Unit (STU)

	Weaving in Library Code
	Options
	-p|--path <arg>
	-d|--dest <arg>
	-e|--extension <arg>
	-v|--verbose [<arg>]
	-c|--compile <arg>
	-o|--output <arg>
	-i|--include_files
	-a|--aspect_header <arg>
	-r|--repository <arg>
	--config <arg>
	-k|--keywords
	--introduction_depth <arg>
	--no_line
	--gen_size_type <arg>
	--problem...
	--no_problem...
	--warn_...
	--no_warn_...
	-I <arg>
	-D <name>[=<value>]
	-U <name>
	-include <arg>

	Examples

	Platform Notes
	Ports
	Linux
	Windows
	Solaris
	MacOS X

	Back-End Compiler Support
	GNU g++
	Cygwin/GNU g++
	MS VC++
	Borland C++

	Problems & Workarounds
	Common Pifalls
	Include Cycles
	Duplicate Forced Includes in STU Mode
	Compiling libraries
	Project structure
	The --aspect_header option

	Unimplemented Features
	Multi-Threading Support
	Parse Errors
	Templates
	Macros
	Unimplemented Language Elements
	Support for Plain C Code
	Support for C++ language extensions
	Constructor/Destructor Generation
	Functions with variable argument lists
	Restrictions on calling tjp->proceed()
	Advice on advice

	Code Transformation Patterns
	Inclusion of Aspect Header Files

